März 2018, Challenge-Team: neues Motorboard, neue Motoren

Das grosse Event im Monat März war zweifelsohne das zweite und letzte Review vor den Austrian Open im April. Dieses fand am 10. März statt. Um alle Milestones und Ziele zu erreichen, musste das Challenge-Team einige Stunden Arbeit leisten.

Die Mechanik hat die Motoren ausgetauscht und das Ballaufnahmesystem eingebaut. Ersteres musste getan werden, weil es mit den bisherigen Motoren einige Probleme gab. Nun schmücken kleinere Motoren, welche einwandfrei funktionieren, den Roboter. Diese sind leichter und haben ein kleineres Drehmoment, sind jedoch trotzdem genug stark um den Roboter anzutreiben. Der Einbau der Motoren und des Ballaufnahmesystems verlief ohne grössere Probleme. Damit die Elektronik mehr Platz zur Verfügung hat und die Verkabelung der Boards sich einfacher gestalten, wurde ausserdem der Abstand zwischen den beiden Decks vergrössert. Auf dem oberen Deck finden nun 4-5 Bälle Platz, was für den Wettbewerb vollkommen ausreicht.

Challenge-Roboter von Oben: zwei Bälle auf dem oberen Deck

Challenge-Roboter von der Seite: Die Elektronik (Boards) befindet sich zwischen den beiden Decks

Die Software hat die neue Ansteuerung über das Motorboard in den Code implementiert. Diese neue Ansteuerung der Motoren per SPI und mit neuen Motorboards wurde von einem der Passivmitglieder erstellt. Damit können die Motoren viel genauer angesteuert werden. Auch die Position, in welcher sich ein Motor befindet, kann ausgelesen werden. Ausserdem kann der Roboter nun um einiges langsamer fahren, da das Motorboard die Geschwindigkeit selbst korrigiert. Zusätzlich wurden
einige kleine Änderungen am Line Follower vorgenommen, die Geschwindigkeit des Programms wurde wesentlich erhöht und die Anzahl write-Befehle an das Motorboard stark reduziert. Durch die Implementation der Ansteuerung der Servos kann der Roboter nun seinen Arm nach oben und unten bewegen.

Die Elektronik hat in diesem Monat viel erreicht. Die Motorboards wurden durch neue getauscht. Sie besitzen nun eigene Prozessoren. Dies ermöglicht die Verarbeitung der Daten der Motorenrotation. Mit diesen kann nun im Programm gearbeitet werden. In Zusammenarbeit mit der Mechanik wurde ausserdem ein neues Lichtboard an den Roboter angebracht. So funktionieren die Sensoren besser und der silberfarbene Streifen auf dem Spielfeld kann erkannt werden. Nebenbei wurde auch noch das Verkabelungssystem, mit welchem die einzelnen elektronischen Bauteile miteinander verbunden sind, vereinfacht. Die Arbeit am Roboter geht so deutlich leichter von der Hand.

Verkabelungssystem des Challenge-Roboters

neues Motorboard des Challenge-Roboters

Februar 2018, Challenge-Team: Roboter fertig verkabelt, Line Follower funktioniert

Neben dem langersehnten 24h-Wettbewerb am 10. und 11. Februar hat das Challenge-Team natürlich auch an seinem Roboter weitergebaut. Viel Zeit bleibt ihnen nicht mehr: bereits Mitte April steht mit den Austrian Open der grosse Wettbewerb des Teams an.

Die Mechanik hat im Februar das Ballaufnahmesytem für die Montage vorbereitet und das Raupensystem verbessert. Die Raupen wurden geölt und von den Antriebsrädern wurde einiges weggeschliffen. Vom Ballfangarm wurden zwei Teile mit ABS ersetzt, da das Holz den Belastungen nicht standhalten konnte. Zusätzlich wurden zwei Mikrotouchschalter gelötet und modifiziert. Anstelle mit einer kurzen und geraden Aluminiumplatte wurde der Schalter mit einem aus einer Aluminium Platte selbst ausgeschnittenem Plättchen bestückt. Dieses Plättchen ist deutlich länger, womit dann auch der Schalter früher gedrückt wird. So kann der Touchsensor weiter hinten im Roboter eingebaut werden. So wird der Roboter deutlich kompakter und das Ballaufnahmesystem kleiner und leichter.

Bei der Software wurde der Line Follower fertiggestellt, welcher nun einer eigens abgesteckten und anspruchsvollen Teststrecke folgen kann. Somit wird er den Anforderungen des Teams gerecht. Zusätzlich können nun die Farbsensoren angesteuert werden. Der Roboter kann auch schon den Silberstreifen am Ende der Strecke erkennen. Auch das hohe Pfeifen der Motoren konnte mit der Erhöhung der Frequenz des PWM-Signals gelöst werden. Als nächste Hürde stehen die Speed Bumps an, welche der Roboter überqueren muss. Das Erkennen der grünen Flächen auf der Strecke muss noch im Code implementiert werden, damit der Roboter auch darauf reagieren kann.

Die Elektronik hat im Februar den Roboter fertig verkabelt und die Farbsensoren angeschlossen. Ausserdem wurde mit dem Zeichnen eines Motorboards begonnen. Die Verkabelung wurde sauber aufgeräumt und beschriftet. Somit werden Missverständnisse vermieden und auch die Informatiker haben bei der Verkabelung einen besseren Durchblick. Das Motorboard wird von Tiago mit Hilfe der AutoDesk Software gezeichnet. Nach längerem Testen kam man zur Erkenntnis, dass man die problembereitende silberne Fläche durch längeres Beleuchten doch erkennen kann. Das war der wohl erfreulichste Moment dieses Monats. Für die zusätzliche Beleuchtung wurde eine alte LED Platine des WM-Teams verbaut. Diese ist mit weissen LEDs bestückt. Die gute Einführung in die Eage-Software hat uns sehr geholfen. Im Moment bereiten die grünen Flächen noch Sorgen. Diese können fast nicht erkannt werden, da sie wohl zu viel rot enthalten. Dieses Problem kann jedoch vielleicht gelöst werden, indem die Blauwerte ausgelesen werden.

Februar 2018, WM-Team: 24h-Wettbewerb und Vorbereitungen fürs 2. Review

Am 10. und 11. Februar fand endlich der 24h-Wettbewerb statt. Mit 11 anwesenden Teams haben wir 24 tolle, interessante und vor allem kreative Herangehensweisen gesehen, um unsere verschiedenen Aufgaben zu lösen. Mit doppeltem Besuch des romanischen Fernsehens (RTR) konnten wir auch gute Werbung für unsere Sache machen und hoffen so, dass auch nächstes Jahr ein noch besserer Wettbewerb stattfinden wird.

Doch auch neben dem 24h-Wettbewerb liefen die Vorbereitungen fürs zweite Review am 10. März in vollem Gange. In der Mechanik wurde vor allem an einem höhenverstellbaren Dribbler gearbeitet. Dies war in den letzten Jahren immer wieder ein Problem, denn je nach Dribbler und Unterlage des Spielfelds gibt es da leichte Abweichungen, was zu einer unsauberen Kontrolle des Balles führt. Die Grundidee besteht darin, dass wenn der Ball in den Dribbler gelangt, der Dribbler hochgedrückt wird. Mit Hilfe von Federn wird der Dribbler, nachdem der Ball wieder weg ist, in seine ursprüngliche Position hinuntergedrückt. Für diese Konstruktion mussten neue Dribblerhalterungen gezeichnet und ausgeschnitten werden, zuerst aus Holz, danach auch aus Carbon. Das Ganze hat jedoch nicht so geklappt wie erwartet, denn der Dribbler klemmt manchmal und bleibt auch mal in einer schrägen Position stecken. Am Review werden da aber bestimmt einige Verbesserungsvorschläge gebracht. Neben dem neuen Dribbler wurden auch Löcher und Vertiefungen für die Montage der Liniensensor- und Ballsensorboards gemacht.

Bei der Software wurde an der Positionsfindung und einer Goaliestrategie gearbeitet. Das Programm für die Positionsfindung ist auf eine einseitige Einwirkung auf die Ultraschallsensoren erfolgreich getestet worden. Nun gilt es noch es auf die zweiseitige Einwirkung zu testen, ansonsten ist das Programm aber einsatzbereit. Die Goaliestrategie ist momentan noch in der Entwicklungsphase. Eine grundlegende Strategie, nämlich ein direktes Anfahren des gegnerischen Tors, funktioniert bereits. Jetzt wird an einem groben Konzept gearbeitet, welche das Entscheiden für die beste Anvisierung des gegnerischen Tors ermöglichen soll.

Im Bereich der Elektronik wurde weiterhin an den neuen Motoren gearbeitet. So wurden bei den Hallsensoren Pullup-Widerstände eingesetzt, wodurch die Signale nicht mehr so stark rauschen. Auch der Motor läuft so besser. Als nächster Versuch steht das Einsetzen von Induktivitäten bei den Phasen an. Die Liniensensoren wurden in den neuen Roboter eingesetzt und funktionieren sehr gut. Es gibt sehr grosse Wertunterschiede zwischen grün und weiss. Das bedeutet, dass wir die Linien sehr wahrscheinlich mit grosser Zuverlässigkeit erkennen können. Es besteht auch die Chance, dass wir die schwarzen Torraumlinien erkennen können. Die Linienerkennung muss aber noch bei schnellem Fahren getestet werden.

Januar 2018, Challenge-Team: Und nochmals ein Line Follower…

Nach den wohlverdienten Weihnachtsferien bereitete sich das Challenge-Team weiterhin für die Austrian Open, welche im April in Linz/AU stattfinden werden, vor.

Bei der Mechanik konnte der grösste Teil des Roboters fertiggestellt werden: Er kann nun mit der Elektronik bestückt werden. Die Grundplatten wurden aus einer Holzplatte gefräst. Der Grund ist, dass Holz zum einen leichter als der von uns verwendete Kunststoff ist und zum anderen besser für die Verarbeitung geeignet ist. Einzig die Verbindungsstellen, welche die Servos halten und die untere mit der oberen Platte verbinden, wurden aus Kunststoff angefertigt. Beim Aufladesystem der Bälle gab es einige Probleme. So darf die Verbindung von den Servos zum System nicht direkt sein, da sonst bei jeglicher asynchronen Drehung der Servos die Schaufel auseinanderbrechen würde. Um dieses Problem zu lösen wurde zunächst eine Verbindung zu den Servos erstellt, welche danach an der Schaufel befestigt wird.

Die Software hat im Januar den Line Follower neu geschrieben. Der Grund dafür waren die Korrekturwerte: Bei geringem Korrekturwert würde der alte Line Follower geradeaus über die Ecken fahren, bei etwas höherem Wert könnte er jedoch einer geraden Linie nicht mehr folgen, da der Roboter zu schnell werden und so die Linie verlieren würde. Mit der Hilfe eines älteren Mitglieds konnte ein neuer Line Follower entwickelt werden. Dieser war dann zwar deutlich besser als der Vorherige, er konnte aber immer noch keiner Ecke folgen, da ein Sensor immer von der Linie abkam. Momentan ist deshalb wiederum ein neuer Line Follower in Entwicklung. Dieser baut auf den Ideen der vorherigen Version auf, soll jedoch das „Eckenproblem“ lösen.

Das Elektronikteam hat im ersten Monat des Jahres ein defektes Powerboard repariert und ein weiteres fertiggestellt. Mit der Software wurde ausserdem an Lösungsvorschlägen getüftelt und verschiedene Arten von Lichtsensoren an verschiedenen Oberflächen getestet. Mit diesen Tests wollte man herausfinden wie gut jene Lichtsensoren verschiedene Materialien erkennen können und wie nützlich diese dann fürs Team sind. Zusätzlich wurde das neuste Teammitglied in verschiedenen Löttechniken geschult, wie zum Beispiel dem Löten von Widerständen an Platinen. Auch das Erstellen von Schaltplänen für Platinen auf der von uns benutzten Software wurde geübt. Neben diesen grösseren Aufgaben wurden auch Kleinigkeiten erledigt, wie das Anfertigen von Steckern oder das Reparieren von Kabeln.

Natürlich hat auch das Challenge-Team kräftig an den Vorbereitungen für den 24h-Wettbewerb mitgeholfen, welcher am 10. und 11. Februar stattfinden wird.

Januar 2018, WM-Team: Neue Motoren, neue Probleme

Das WM-Team liegt aussergewöhnlich gut im Zeitplan. Trotzdem: Vor den Austrian Open (April) und später dem RoboCup Junior in Montreal (Juni) wartet noch viel Arbeit auf unser erfahrenstes Team.

Ein grosses Thema im Januar war bei allen Teams der 24h-Wettbewerb; oder wenigstens die Vorbereitung auf dieses Spektakel. Wie jedes Jahr mussten die Spielfelder ja vorher noch gebaut werden. Geplant waren vier Bautreffen, von welchen drei bereits abgehalten wurden. Jeweils am Samstag oder Sonntag wurde während einigen Stunden geschnitten, geschleift und gebohrt: Jedes Wochenende zwei Spielfelder einer Kategorie. Vor dem letzten Bautreffen kann man nun sagen, dass, wenn nichts schiefläuft, der 24h-Wettbewerb wie geplant am 10. und 11. Februar stattfinden kann.

Doch auch neben den Vorbereitungen für den 24h-Wettbewerb musste gearbeitet werden. Die Mechanik hat so zum Beispiel neue Carbonstäbe bestellt und alle Teile (bis auf einige welche noch von der Software getestet werden muss) des zweiten Roboters ausgeschnitten. Die Carbonstäbe werden als Achse für den Dribbler benutzt. Apropos Dribbler: Mit dem Ankommen der Carbonstäbe können nun endlich die verschiedenen Dribbler getestet werden. Dies wird im Februar an hoher Stelle auf der To-Do-Liste der Mechanik stehen. Neben den Carbonstäben sind auch die neuen Faulhaber-Motoren angekommen. Da gab es aber leider eine kleine Verschätzung. Damit der Motor sauber ins Aluminiumgehäuse des Omniwheels passt, musste eine kleine Hülse angefertigt werden. Mit Hilfe der Drehbank entstand aus einem 10mm dicken Aluminiumstab ein mit 3mm Innendurchmesser und 4mm Aussendurchmesser relativ dünnes Aluröhrchen, welches so über den Motor gestülpt wird. So kann dieser im Gehäuse nicht mehr umherrutschen.

Die Software hat im Januar an einer Möglichkeit gearbeitet, einen anderen Roboter mit den Ultraschallsensoren zu erkennen um einerseits die Positionsfindung zu verbessern und andererseits um auf verschiedene Situationen besser reagieren zu können. Durch die Streuung der Ultraschalles war jedoch nicht immer klar ersichtlich, wo sich das gemessene Objekt befindet. Dies stelle sich als Problem heraus. Es wurde versucht, die Streuung so gut wie möglich einzudämmen. Zusätzlich wurde mit den Tests der neuen Ballsensoren begonnen. Dabei wurde ein weiteres Problem ersichtlich: Die Werte konnten nicht alle auf einmal ausgegeben werden. Mit Hilfe konnte aber eine Lösung gefunden werden. Der Prozessor war mit dem Programm schon stark ausgelastet und konnte so nicht mehr so viele zusätzliche Aufgaben bewältigen.

Die Elektronik hat die angekommenen Boards bestückt. Die Ballsensoren können die Entfernung des Balls ausgeben, was soweit gut ist. Um die Kommunikation untereinander und mit dem Mainboard zu testen müssen sie jetzt noch eingebaut werden. Auch die Liniensensorboards funktionieren gut. Durch das Potentiometer kann man die Referenzspannung so einstellen, dass die Werte von grün zu weiss zu schwarz relativ grosse Unterschiede haben. Dadurch können die Linien auf dem Spielfeld mit grosser Zuverlässigkeit erkannt werden. Bei der Ansteuerung der neuen Motoren gab es allerdings einige Probleme. Die Referenzspannung für die digitalen Hallsensoren wurden zu hoch gesetzt. Nach der Korrektur rotierte der Motor, wurde jedoch ziemlich schnell heiss. Das könnte daran liegen, dass die Hallsensorsignale rauschen. Das muss noch behoben werden. Ausserdem hat die Elektronik am Motorboardlayout gearbeitet, sodass es in den Roboter passt.

Dezember 2017, Challenge-Team: Viele Entscheidungen …

Das grosse Event des Dezembers war sicherlich das erste Review des Jahres und somit die erste Kontrolle für die Älteren, ob die beiden Teams ihre Ziele erreicht haben und um zu sehen, welche Dinge noch verbessert werden mussten. Dieses erste Review fand am 2. Dezember statt.

Im Dezember hat die Mechanik das CAD fürs Auffangsystem der Bälle erstellt. Es besteht aus zwei Servomotoren und einer Holzkonstruktion, welche die Bälle einfängt, woraufhin die beiden Servos die relativ schweren Bälle schnell und zuversichtlich auf das oberste Deck des Roboters heben. Dort werden die Bälle gesammelt um sie zum Schluss in die Endzone tragen zu können.  Die Holzkonstruktion besteht aus einer Gabel und einem Trichter, welcher vor der Gabel eingebaut wird, damit das Feld schneller abgefahren werden kann.

Bei der Software wurde hingegen ein Kalibrierungsprogramm geschrieben, welches notwendig ist, weil zwei Sensorwerte fast nie übereinstimmen und stark von der Beleuchtung des Feldes abhängig sind.

Zudem ist es gelungen ein Programm zur Auslesung der Encoder der Motoren zu schreiben. Da diese Auslesung für Arduinoboards recht rechenintensiv ist, kann dieses Programm nicht auf dem gleichen Arduino laufen gelassen werden, mit welchem der Roboter gesteuert wird. Leider ist es uns aber noch nicht gelungen, diese Daten vom einen Arduino zum Anderen zu übertragen.

Der Code des PID Line Followers ist zwar fertig, jedoch muss bei diesem noch viel an den Details gearbeitet werden. Alle Konstanten müssen noch richtig eingestellt werden, was noch einige Tests erfordert.

Die Elektronik hat sich in diesem Monat mit dem Problem der Erkennung eines spiegelnden Streifens befasst. Ausserdem wurde nach einer Lösung gesucht um die Ballabladezone effizient zu finden. Des Weiteren wurden Überlegungen angestellt, ob eine Sensorik eingebaut werden soll, welche die Bälle (repräsentieren Opfer eines Erdbebens) findet. Eine andere Möglichkeit wäre, dass der Roboter die Zone auf gut Glück durchsucht. Diese Methode wäre wahrscheinlich effizienter. In mehreren Besprechungen wurde mit der Software und der Mechanik abgesprochen, was nötig ist und vor allem was im Bereich des Machbaren liegt.

Bei dem spiegelnden Streifen wurde auf die Lösung eines weiter vom Boden entfernten Lichtsensors mit einer normalen LED entschieden. Diese ist weniger heikel als diese mit dem Laser. Für die Ballabladezone wurde mit Mitsprache der Mechanik für eine Lösung mit mehreren Berührungssensoren entschieden. Diese werden im 90 Grad sowie im 45 Grad Winkel angeordnet. Mit dieser Lösung sollte das Dreieck in einer Ecke des Spielfeldes findbar sein. Ausserdem wurde sich geeinigt, dass die Bälle nicht aktiv gesucht werden. Der Nutzen dieser Methode wäre kleiner als der Zeitaufwand zum Konstruieren eines solchen Systems.

Die grössten Probleme wurden bei der Einigung auf den Verzicht des Systems zur Ballfindung sichtbar. Schliesslich konnte sich aber, mit Hilfe der älteren Mitglieder, doch noch geeinigt werden. Offenbar hatten diese nämlich das gleiche Problem. Sie haben sich damals für die Lösung mit Sensoren entschieden. Diese Entscheidung war aber leider die falsche, denn am Wettbewerb war dies zu fehleranfällig und inkonsequent. Mehrere andere Teams waren mit dem Zufallsprinzip erfolgreicher gewesen.

Im nächsten Monat wird sich die Elektronik mit der technischen Umsetzung der gefassten Entscheide befassen.

 

Dezember 2017, WM-Team: Bestellungen, Spielfelder und Strategien

Nach dem ersten Review am 2. Dezember ging es für alle Bereiche des WM-Teams in grossem Tempo weiter…

So hat die Elektronik die Boards bestellt, namentlich das Liniensensor-, das Ballsensor- und das Knopfboard. Gleichzeitig wurden auch gleich einige Bauteile bestellt. Ausserdem wurden für das Motorboard ein Boost Converter gesucht und auch ein passendes gefunden. Dieser sollte 12V in 20V umwandeln, um den Ball weiter schiessen zu können. Dies war nicht sehr einfach, doch im Datenblatt standen zum Glück alle nötigen Informationen. Dann wurde beim Layout weitergearbeitet, d.h. es wurden einmal alle Bauteile platziert und geschaut, wie es am besten passt.

Bei der Mechanik konnte ein Roboter bis zum ersten Review einigermassen mechanisch fertiggestellt werden. Dies bedeutet, dass die Motoren und der Dribbler noch fehlen. Nach dem Review wurde ein etwas provisorischer Teststand gebaut. Mit diesem sollen einige Dribblerarten getestet werden und anschliesslich entschieden werden, welche Methode und Art die beste für die Roboter ist. Leider sind die Carbonstäbe, welche für die Befestigung der Dribbler notwendig sind, ausgegangen. Da müssen neue bestellt werden, doch bis Ende Dezember ist die Mechanik noch nicht dazu gekommen.

Die grösste Arbeit im Dezember lag im kompletten Neuzeichnen der Spielfelder für den 24h-Wettbewerb, d.h. inklusive allen Bohrungen für Schrauben anderen notwendigen Angaben für einige der Aufgaben. Dies war sehr zeitaufwändig, doch bis Ende Dezember war dies komplett fertig.

Im Januar wird die Mechanik mit dem zweiten Roboter beginnen und die Dribblerarten testen. Ausserdem wird mit dem Bau der Spielfelder begonnen.

Die Software hat im Dezemeber an einer neuen Art der Positionsfindung gearbeitet. Es gab ein kurzes Problem mit den Encoderwerten, doch dies liess sich schnell lösen, da nur ein Kabel zu nahe an das der Batterie gekommen war. Auch wenn das Programm noch nicht ganz fertig ist, funktioniert es im Ansatz. Die Position stimmt ziemlich gut und die Werte sind konstant.

Des Weiteren hat sich das Softwareteam Gedanken zu möglichen Stürmerstrategien gemacht. Zum einen will man die Möglichkeit haben, dass der Stürmer bei der Verteidigung hilft, andererseits soll er aber auch beim Angriff den Ball abschirmen können, und das bis zum Schuss aufs gegnerische Tor.

November 2017, Challenge-Team: Prototyp steht

Auch beim Challenge-Team galt der November der Vorbereitung fürs erste Review und somit der Vorführung ihrer Fortschritte vor den erfahrenen Ehemaligen.

Die Mechanik konnte das ganze Raupensystem überarbeiten und auf den Roboter montieren. Der Grund für die nötige Überarbeitung war, dass das zuvor gefertigte Kettensystem einen zu hohen Widerstand hatte. Deshalb musste ein neues Antriebssystem entwickelt werden. Anstatt die einzelnen Kettenglieder zu drucken, entschied man sich für eine vorgefertigte Gummiraupe von Lego. Diese sollte später mithilfe einer Schneckenwelle angetrieben werden. Für die Welle und das dazu benötigte Zahnrad benutzt man auch bereits fertige Ware.

Durch diese Veränderungen in der Mechanik laufen die Raupen mit einem hohen Drehmoment und der Roboter kann mit einer höheren Genauigkeit gesteuert werden.

Die Software hat einen neuen Linienfolger für den letztjährigen Roboter programmiert. Dieser funktioniert auch wesentlich besser als der vom letzten Jahr. Eine Schwachstelle hat er jedoch noch: Er hat Schwierigkeiten, die scharfen Kurven zu erkennen. Das muss noch verbessert werden. Das Hauptproblem dabei sind die grossen Räder des Roboters, welche nach einigen Sekunden ungebremsten Fahrens zu schnell rotieren um eine scharfe Kurve sauber fahren zu können. Leider fangen die Räder aber gar nicht an zu drehen, wenn man sie mit einer zu tiefen Geschwindigkeit ansteuert. Hoffentlich können die Ehemaligen am ersten Review einige Tipps geben oder das Problem sogar beheben.

Auch das Elektronikteam hat im November an einigen Dingen gearbeitet. Die Hauptarbeit war die Erstellung von Ersatzteilen, man hat sich aber auch an an der Problemlösung der Software beteiligt.

Die Ziele für den November war es ein weiteres Motorboard herzustellen, die Farb- und Schwarz-Weiss-Sensoren betriebsbereit zu machen und den ersten Prototypen des Roboters in Betrieb zu nehmen.

Das Motorboard konnte ohne grössere Probleme fertiggestellt werden. Es wurde sogar ein Neues begonnen. Die Sensoren konnten am Prototypen montiert werden, allerdings wurden die Farbsensoren nocht nicht benutzt.

Nebenbei hat sich die Elektronik auch mit der Software auseinandergesetzt. Zu einem späteren Zeitpunkt kann es nämlich nützlich sein, auch die Grundlagen dieses Bereiches zu kennen. Das Hauptziel wurde erreicht: Der Prototyp steht und kann getestet werden.

November 2017, WM-Team: Vorbereitungen fürs erste Review

Um alle Milestones, welche für das 1. Review am 2. Dezember festgesetzt waren zu erreichen, wurde im November hart gearbeitet.

So hat die Elektronik beim Schaltplan des Liniensensorboards einige Verbesserungen durchgeführt. Die Referenzspannung bei den Lichtsensoren wird man mit einem Potentiometer einstellen können. Ausserdem wurden die Kondensatoren und Ferrits angepasst.

Eine Schwierigkeit war das Zeichnen des Layouts des Liniensensorboards. Schlussendlich ist es aber gut gegangen.

Zusätzlich wurde die Helligkeit der eingeplanten LED getestet. Diese ist genug hell, doch dafür muss das Board genug nah am Boden montiert sein, damit es alle Linien erkennen kann.

Ebenfalls abgeschlossen werden konnten die Layouts der Ballsensorboards.

Bei der Mechanik musste bis zum 2. Dezember ein Roboter mechanisch fertig sein. Um das zu erreichen wurde im November mit dem Ausschneiden der Einzelteile angefangen. Da wir noch kein konkretes Ja oder Nein für die Benutzung des Lasercutters erhalten haben, wurden die Teile wie in den Jahren davor von Hand ausgeschnitten, in diesem Fall mithilfe eines Dremels. Trotzdem wurde diese Arbeit ziemlich schnell abgeschlossen.

Die mittlere Halterung des Roboters muss jedoch nochmals neu gemacht werden. Der Grund dafür liegt an den fünften Ultraschallsensor welcher dieses Jahr geplant ist. Durch intensives Arbeiten der Software wurde herausgefunden, dass dieser deutlich höher montiert werden muss. Dies ist so, weil der Sensor sonst nicht sauber zwischen Torlatte und hintere Wand unterscheiden kann.

Nebenbei wurden noch alle Drähte der Omniwheels ausgetauscht. So werden in Zukunft hoffentlich weniger Subwheels rausfallen.

Um das Testen verschiedener Dribbler konnte man sich leider noch nicht kümmern, da einfach die Zeit fehlte. Es wurden aber bereits einige Ideen im Team gesammelt.

Nach einigen Einstiegsschwierigkeiten mit dem Partikelfilter entschied sich die Software, sich auf die Torwartstrategie zu konzentrieren. Dafür wurde ein fünfter Ultraschallsensor hinten am Roboter angebracht. Der Sinn dieses ist es zu erkennen, ob der Roboter vor dem Tor steht oder daneben. Ein Ultraschallsensor ist nämlich auf Höhe des Tores und der andere sieht über das Tor rüber.

Es traten einige Probleme auf. So wollte der Roboter zum Beispiel, wenn er mal neben dem Tor stand, nicht mehr zurück zu seiner zentralen Position vor dem Tor. Dieses Problem konnte jedoch mit einer zusätzlichen Messung der Ultraschallsensoren behoben werden.

Die neue Torwartstrategie basiert darauf, dass der Roboter sich immer hinter dem Ball schiebt, das jedoch nur solange der Ball weit weg ist. Wenn der Ball in die Nähe des Tors kommt, attackiert der Roboter den Ball und versucht ihn für sich zu gewinnen.

 

Neben all diesen Vorbereitungen fürs erste Review schreitete natürlich auch die Vorbereitung für den 24h-Wettbewerb voran. So hat Gian Flurin eine Liste mit rund 50 Mittelschulen der Schweiz erstellt. 30 von denen wird eine schriftliche Einladung geschickt, die restlichen werden per E-Mail über unseren Wettbewerb informiert. So sollten sich mehr Teams als letztes Jahr anmelden.

September-Oktober 2017, WM-Team: Der Startschuss ist gefallen

Software (Andrea Däppen & Alex Marugg)

Nach einer Einführung durch unsere Vorgänger im Bereich Programmierung setzten wir uns selbst mit dem Code des Roboters auseinander. Zu Beginn verschafften wir uns einen Gesamtüberblick und fingen dann mit simplen Sachen an, wie zum Beispiel dem einfachen Umherfahren.
Danach begannen wir uns mit dem Partikelfilter auseinanderzusetzen. Der Partikelfilter ist für die Positionsberechnung des Roboters auf dem Spielfeld zuständig. Dieser hat zuvor schon Probleme gemacht. Mit der Auslesung der ausgegebenen Koordinaten wollen wir nun die Zuverlässigkeit bestimmen und danach entsprechende Anpassungen anbringen.

Elektronik (Curdin Steinauer)

September:

Wir haben uns dafür entschieden, neue Ballsensorboards zu erstellen. Dafür habe ich verschiedene digitale Infrarot Sensoren gekauft und getestet. Ich habe einen gefunden, mit welchem wir den Ball besser erkennen können. Ich habe auch mit dem Zeichnen des Ballsensorboards angefangen. Für die Liniensensoren habe ich smd LEDs bestellt und ebenfalls getestet. Sie sind genug hell und können in das neue Liniensensorboard eingefügt werden. Da wir dieses Jahr bürstenlose Motoren verwenden, muss ich ein neues Motorboard zeichnen. Um die Motoren anzusteuern brauchen wir vermutlich DRV10970 Driver. Ausserdem habe ich ein Knopfboard gezeichnet, auf dem man, für weitere Einstellungen und besseren Zugang, mehrere Knöpfe hat.

Oktober:

Ich habe die Schaltpläne für die Ballsensorboards mit den neuen Infrarotsensoren abgeschlossen und mit dem Layout der Slaves begonnen. Es wird nur noch ein Board geben, das wir hinten links und rechts benutzen können. Da die Infrarotsensoren den Ball auch hinten sehen können, decke ich diese mit einem Schrumpfschlauch, welcher vorne ein Loch hat, ab.
Beim Schaltplan des Liniensensorboards habe ich LEDs eingefügt. Sie beleuchten den Boden, damit die Farbe der Linie erkannt werden kann.

Mechanik (Gian Flurin Bearth)

Im September fand der Kick-Off statt. Da haben wir über mögliche Verbesserungen am Roboter und der Strategie diskutiert und uns auf einige geeinigt, welche wir in diesem Jahr durchsetzen wollen. Ausserdem haben wir Ziele festgelegt und uns so entschieden, auf was wir in diesem Jahr besonders achtgeben wollen.
Ausserdem fand die Planungssitzung für den 24h-Wettbewerb statt, an welchem wir einige coole Spielfelder kreiert haben. Neben diesen beiden Sitzungen fand mit dem internen WM-Team noch eine Bausitzung statt, in welcher wir uns für das Aussehen der Roboter entschieden haben.
Nach diesen Sitzungen ging es für mich zuerst ans CAD-Zeichnen. Da dieses bereits Anfang Oktober fertig sein musste, musste ich mich da sputen. Leider konnte ich noch nicht die diesjährigen Boards zeichnen, da unser Elektroniker noch nicht genau weiss, wie diese schlussendlich aussehen werden.
Eventuell möchten wir dieses Jahr die Grundteile der Roboter mit einem Lasercutter ausschneiden, wodurch sich die Genauigkeit verbessern wollen. Deshalb sind wir mögliche Lasercutter-Anbieter durchgegangen, die uns da vielleicht weiterhelfen könnten. Ende Oktober hatten wir da noch keine definitive Antwort.
Auch bei den Motoren gab es eine Veränderung, denn wir benutzen dieses Jahr neue Brushless-Motoren.
Neben den Arbeiten für das WM-Team habe ich noch angefangen, die CADs für die 24h-Spielfelder zu zeichnen. Diese sind jedoch zu diesem Zeitpunkt, also Ende Oktober, noch nicht fertig.
Nebenbei ersetze ich die Drähte der Omniwheels um dafür zu sorgen, dass die Subwheels nicht mehr so häufig herausfallen.