RoboCup Junior Austrian Open in Innsbruck, 2019

 

Donnerstag

 

Nach der Vollendigung des Packens gingen wir frohen Mutes auf den Zug nach Inssbruck. Die Reise verlief ereignislos und am frühen Nachmittag waren wir bereits eingetroffen und konnten uns an die Arbeit machen. Leider detektierten wir alsbald verschiedene Defekte an den Soccerrobotern des WM-Teams. Entsprechendwurde der Arbeitsplatz sofort eingerichtet und troubleshooting an allen Ecken und Enden begonnen.

Bei dem Rescue Line Team funktionierte die Linienfolge wie geplant und auch das Rescue Maze Team war fahrbereit.

 

Vor einem langen Abend genossen wir dann noch einen ausgezeichneten Hamburger in einer nahen Burgerbude.

 

Freitag

 

Zum ersten Spiel konnte das Soccer Team noch nicht antreten, da bei beiden Robotern das Antriebssystem nicht funktionierte. Auf den zweiten Match konnte der Erste Roboter dann hergerichtet werden und wurde als Goalie eingesetzt. Er erzielte auch noch ein paar Tore in dem Match. Das Endresultat war 11:3.

 

Mit Hochdruck arbeitete das Team am zweiten Roboter während die beiden Rescue Teams sich um die Wertungsläufe kümmerten. Diese verliefen am

 ersten Tag für das Line Team zuerst enttäuschend, beim zweiten Lauf konnten 50 pkt erzielt werden, indem das Arduino überlistet wurde.

Das Maze Team hatte aufgrund der inkonstaten Distanzsensoren auch Mühe im ersten Lauf, erzielte aber 10pkt. Im zweiten Lauf verabschiedete sich unglücklicherweise das Fahrsystem, weshalb dieser keine Punkte brachte.

Für das Soccer Team standen noch zwei weitere Matches an. Im zweiten waren wir dem slovakischen Team klar unterlegen. Für das dritte Spiel ging es wieder in eine leicht ausgeglicherene Partie mit nur dem Goalie. Das Spiel endete mit 8:3.

Nach stundenlangem Fehlersuchen und der Vernichtung eines Mainboards, welches aus unerfindlichen Gründen einen Kurzschluss hatte, ging der Tag dem Ende entgegen.

Wir entschieden uns in die Stadt zu fahren für ein lokales Gericht. Nach etwas suchen fanden wir dies auch und speisten köstlich.

Samstag

 

Der Samstag und letzte Wettbewerbstag verlief noch mit je einem Wertungslauf für die Rescue Teams und einem Spiel für das Soccer Team. Für das Spiel konnte endlich auch der zweite Roboter fahrfähig gemacht werden, musste jedoch mit einer sehr einfachen Stürmerstrategie spielen, da das Toubleshooting alle Zeit für Kalibration gestohlen hatte. Nachdem die Motoren des Gegners aufgrund eines Defektes begannen zu überhitzen mussten sie ein gut verlaufendes Spiel leider nach der ersten Halbzeit aufgeben.

 

Das Line Team konnte die Leistung vom Vortag nicht mehr toppen und erreichte im letzten Lauf 20pkt. Das Maze Team konnte sich zum Vortag noch einmal steigern und konnte ebenfalls 20pkt erreichen. Unglücklicherweise hatten auch diese Teams mit defekten zu kämpfen, so stieg dem Maze Team der Servo für das Abwerfen der Pakete aus, das Line Team kämpfe mit inkonstanten Liniensensoren.

 

 

März 2018

WM Team

In diesem Monat baute die Mechanik einen Reifen, der auf der Höhe des Goals am Roboter befestigt wurde. Dieser hält den Roboter davon auf, in das Goal zu fahren. Es benötigte mehrere Versuche eine Befestigung für den Reifen zu machen, die genug stabil ist. Der Roboter fährt in einem Wettkampf teils mehrere Male mit hohen Geschwindigkeiten auf das Goal zu. Aus diesem Grund muss der Reifen gut befestigt sein. Damit der Reifen austauschbar ist, wurden Winkel ausgedruckt. Diese Winkel wurden an Carbonstäbe angeklebt und am Reifen mit Schrauben und Muttern angeschraubt. Als Weiteres wurden die Löcher für die Liniensensoren in die Bodenplatte eingezeichnet und neue 2.5 Millimeter dicke Plastikschrauben gekauft.

Der Roboter in neuem Look

 

 

Die Elektronik bestellte Boards sowie verschiedenes Werkzeug um effizienter arbeiten zu können. Des Weiteren wurden neue Linesensorboards bestellt und funktionstüchtig bestückt. Diese wurden auch schon getestet. Es sollte mit ihnen sehr einfach möglich sein die Linien zu erkennen. Unter Anderem da sie auch über grössere Distanzen als 2mm noch zuverlässig funktionieren. Mit den bestellten Teilen wurden einige der neuen Mainboards funktionstüchtig bestückt. Des Weiteren wurde ein Kabel konstruiert um die untere Platine des LIDARs zu ersetzen, so kann weiteres Gewicht eingespart werden und der Zugang zum Mainboard auf dem Roboter wird erleichtert. Durch zusätzliche Bestellungen in diesem Monat wird es auch möglich sein die gesamte Elektronik für den zweiten Bot fertigzustellen. Im folgenden Monat werden nun noch neue Powerboards sowie andere Platinen bestellt um den Bestand aufzufüllen. Zusätzlich wird ein kompletter Satz Elektronik für den zweiten Bot gebaut werden sowie möglichst viele Ersatzteile. Ausserdem werden die Kabel auf den Robotern auf das Minimum reduziert um weiteres Gewicht zu sparen.

 

Aufgrund der Schwierigkeiten mit der Kommunikation zwischen Raspberry Pi und dem Mainboard, wurde entschlossen das Rasperry zugunsten von einem Esp32 auszuwechseln. Dieser Wechsel verlief ohne grosse Probleme weshalb es nun bereits möglich ist die auf dem Esp errechnete Position an das Mainboard zu senden. Zusätzlich ermöglicht dies nun, dass die Drehung des Roboters an den Esp gesendet werden kann. Damit kann nun unabhängig von der Orientierung des Roboters seine Position berechnet werden. Auch wurden kleinere Bugs bei der Settingsboard Auslese behoben. Mit den neuen Liniensensoren bestückt konnte zusätzlich damit begonnen werden, das Programm für diese umzuschreiben.

Rescue Maze

Im März war es wichtig, dass die Mechanik einen Prototyp-Roboter hergestellte, mit dem der Rest der Gruppe arbeiten kann. Zuerst wurden alle wichtigen Bestandteile der Mechanik übergeben, sodass sie diese in den Roboter einbauen konnte. Als dann auch die 3D-ausgedruckten Räder geliefert wurden, ging das zusammenschrauben der schon ausgeschnittenen Teile schnell. Noch hatte die Mechanik das Ziel, den Prototypen so zu bauen, dass er noch gut anpassbar war. So ist nun das Grundgestell vom Maze Roboter vorhanden, doch es wird noch daran gearbeitet. Komplikationen gibt es mit der richtigen Auswahl der Elektromotoren. Auch wurde beim Bauen viel mit Werkzeug improvisiert, weil die Mechanik noch nicht völlig vertraut mit der Physikwerkstatt ist.

Der März war für die Elektronik ein äusserst produktiver Monat. Durch harte Arbeit und mit etwas Hilfe konnte sie fast alle Dinge fertigstellen. Anfangs tauchte das Problem auf, dass die Ansteuerung des Motorboards nicht funktionierte. Es stellte sich heraus, dass es ein Teil gibt, was dieses Problem löst. Die Elektronik hat dieses Bauteil benutzt. So gelang es, dass der Roboter geradeaus fahren kann. Bis zum Wettbewerb muss die Elektronik nur noch einige Lämpchen löten. Diese werden als Leuchtpakete abgeworfen. Die Elektronik ist zuversichtlich, dass sie es schafft alles bis zum Wettbewerb zu erledigen und funktionierende Elektronik abzuliefern.

 

Die Software konnte diesen Monat die Ansteuerung der I2C Wärmesensoren fertigstellen, sowie die Adresse der Sensoren ändern. Ausserdem wurden die Infrarot Distanzsensoren getestet. Beide Sensorsysteme funktionieren einwandfrei. Die meiste Zeit wurde jedoch damit verbracht die Kommunikation zwischen Arduino und unseren Motorboards zu gewährleisten. Mit dem Motorboard von unsrem WM-Team haben wir den Vorteil, dass die Encoder der Motoren ausgelesen werden können, was mit Arduino Motorboards alleine nicht möglich wäre aufgrund zu geringer Rechenleistung. Jedoch sind die Motorboards des WM-Teams komplexer aufgebaut, da sie auch intelligenter sind. Damit hatten wir einige Probleme sie konnten jedoch zusammen mit der Elektronik gelöst werden.

Rescue Line

Das 3D Modell des Roboters wurde diesen Monat gezeichnet. Als Material der Platten wurde Holz (in Form von 4mm Platten) gewählt. Als Klebestoff wurde zuverlässiger UHU 2-Komponentenkleber ausgesucht, welcher hauptsächlich durch seine Stabilität und Transparenz überzeug. Alle Platten und Teile wurden bereits mit dem Dremel aus dem Holz ausgefräst und danach wurden die Kanten mit
Schleifpapier der Stärke 300 behandelt. Die Seitenplatten wurden an der Bodenplatte angebracht und im nächsten Klebeschritt wird die Motorhalterung an der Bodenplatte angebracht, an welcher auch der Sensor 2mm über dem Boden befestigt wird.

 

In diesem Monat gab es einige herbe Rückschläge. Da das bis da jetzt genutzte Motorboard irreparabel kaputt ging, musste Ersatz geschafft werden. Dabei stellte sich heraus, dass alle anderen Motorenboards, die dem Team zur Verfügung stehen ebenfalls funktionsuntüchtig sind. Um Aushilfe zu schaffen, wurde uns vom WM-Team aus einem ihrer Roboter ein funktionsfähiges Motorenboard geliehen, um nun weiter zu testen. Ausserdem wurde das SPI-Verteilsystem verändert, sodass die bisherigen JST-4 Stecker verwendet werden können. Weiter wurden neue elektronische Bauteile bestellt, um Powerboards herzustellen, die auch eher rar sind. Da noch kein Programm zur Steuerung von Motorboard und Linesensorboard geschrieben wurde, konnten noch keine Tests zur Funktionsfähigkeit dessen durchgeführt werden, was noch  nachzuholen ist.

Januar und Februar 2019

WM-Team

Die Mechanik konnte diesen Monat den ersten Roboter bauen. Bei der Lidarhalterung und dem Dribbler wurden 53 Gramm eingespart. Dies erleichtert es, die Gewichtsbeschränkung von 1100 Gramm einzuhalten. Beim Zusammenschrauben der verschiedenen Carbonplatten drehten die Schrauben im Hartschaum leer. Deshalb wurde Zweikomponenten-Kleber in die Schraubenlöcher gefüllt. Die aus PLA gedruckten Bauteile wurden durch leichteres Carbon-PETG ersetzt. Durch das eingesparte Gewicht können nun Überlegungen zu einer Hülle aus Carbonfaser-Stoff gemacht werden.
Weiter konnte die Mechanik den zweiten Roboter bauen und optische Verbesserungen am Dribbler vornehmen. So wurde nun schwarze Dispersionsfarbe in die Latexmilch gemischt. Als Resultat wurde die Dribblerrolle schwarz. Somit passt sie farblich besser zu den anderen Bauteilen. Bei dem Ausfräsen und Zusammensetzen der Platten wurde darauf geachtet, dass alles zum ersten Roboter identisch ist. Dafür wurden Vorlagen aus Papier ausgedruckt und aus dem Werkstoff ausgefräst. Weiter wurde das CAD Modell angepasst, sodass der Roboter einen rückwärtigen Schutz gegen in das Tor fahren hat. Um die wirkliche Funktionalität und Durchführbarkeit zu überprüfen, wurde ein Prototyp aus Holz angefertigt. Nach Tests und Besprechung wird dieser jedoch nun so angepasst, dass auch ein frontales Eintauchen ins Goal unmöglich wird.

Bei der Elektronik konnten am 24 Volt für den Kicker Verbesserungen, in der Form von dickeren Kabel sowie der Verwendung von Widerständen, um das Motorboard zu schützen, vorgenommen werden.  Auch wurde weiter an den neuen Liniensensoren gezeichnet. Eine der neuen Mainboard-Platinen wurde bestückt. Diese war leider nicht funktionstüchtig, da beim Löten einige Fehler passiert sind. Für einen weiteren Versuch fehlten jedoch die Ersatzteile, die umgehend bestellt wurden. Zudem wurden neue Powerboards gelötet sowie ein Motorboard repariert.
Zudem konnten alle benötigten Bauteile für Ersatzboards und die neuen LinienSensoren bestellt werden. Dies verlief leider mit Komplikationen, da der frühere Lieferant nur noch Firmen beliefert. Vor der Bestellung wurde natürlich das Linienboard vervollständigt und korrigiert, sodass auch die Platinen bestellt werden konnten. Zudem wurden weitere Verbesserungen an den Einstellungen und der Elektronik des Kickers vorgenommen. Das Projekt Kicker ist nun soweit abgeschlossen und es kann ein weiterer fertiggestellt werden.

In der Software wurde diesem Monat begonnen, eine Kommunikation zwischen dem Raspberry und dem Mainboard einzurichten. Das standardmässig eingebaute BSC Modul, mit welchem das Raspberry PI im Slave Modus funktionieren sollte, schien für eine SPI Kommunikation nicht zu funktionieren. Die Bibliothek für die Funktion als I2C Slave konnte nicht zum Laufen gebracht werden. Deshalb wurde der Versuch unternommen, ein SPI Protokoll über die normalen GPIO`s zu starten. Dies stellte sich aber bald als zu langsam für die Datenübertragung heraus. Aus diesem Grund wird nun versucht, das ganze über eine UART Kommunikation zu lösen, da es auf dem neuen Mainboard mehr Anschlüsse gibt, worunter sich ein USART befindet. Auch wurde an einer einfacheren Methode zum Debuggen gearbeitet. Mithilfe dieser ist es nun möglich, aus einer Auswahl an verschiedenen Möglichkeiten Daten auszugeben und diese zu analysieren, was die Fehlersuche deutlich vereinfacht.
Weiter wurde an der Kommunikation zwischen dem Mainboard und dem Raspberry Pi weitergearbeitet. Die geplante UART Kommunikation zeigte sich als schwieriger als zu Beginn angenommen, da der zweite UART Port des Raspberry`s bereits für das Bluetooth-Modul verwendet wird. Doch zum Glück gab es noch die Möglichkeit, an einen USB Port ein Zwischenstück zu hängen. Dies ermöglicht es, die Informationen, die dort über USB ankommen, für UART umzuwandeln und umgekehrt. Weiter konnte ein Beispiel für den USART Code für das Mainboard studiert werde, doch für das Testen davon fehlt noch das neue Mainboard.

 

Dezember 2018: Die Junior Teams nehmen Fahrt auf

WM-Team

Die Mechanik konnte in diesem Monat einen weiteren Dribblerrollenbelag testen und die Carbonplatten für den Roboter ausfräsen. Der Belag für den Dribbler besteht aus einem Antirutsch-Klebeband für Treppen. Auf einer Malerrolle aufgeklebt, bietet er eine gute Haftung. Unglücklicherweise zerstört die raue Oberfläche jedoch die verwendeten Plastik Bälle. Entsprechend kann diese Variante leider nicht eingesetzt werden und die Suche nach Verbesserungsmöglichkeiten geht weiter. Die Platten des Roboters wurden aus 3mm und 4mm Carbon-Sandwichplatten hergestellt. Die 4mm Platten werden verwendet, wenn seitlich Schrauben eingeschraubt werden. So wird sichergestellt, dass die Schraube im Hartschaum zwischen den Carbonschichten halten. Für die Gewinde werden die Löcher mit Epoxid Harz gefüllt. Weiter wurde eine neue und leichtere Lidarhalterung aus Carbon gebaut.

Die ersten Carbon Teile für die neuen Roboter

 

Bei der Elektronik des WM Teams wurde diesen Monat die untere Platine des Lidars untersucht und ein Teil der Platine der neuen Liniensensoren gezeichnet. Zudem wurden Bauteile zur Platinen Bestückung sowie Infrarot-Sensoren für die Ballsensoren bestellt. Die Lidar-Platine wurde nach längerem analysieren für unsere Zwecke als überflüssig befunden. Dadurch lösen sich die aufgekommenen Gewichtsprobleme beinahe gänzlich. In der Kategorie Soccer Light Weight dürfen die Roboter nicht mehr als 1.1kg wiegen. Dies ist eine Herausforderung mit allen verwendeten Bauteilen und eine erste Abschätzung zeigte, dass wir eher zu schwer sind. Bei der Planung der neuen Liniensensoren musste, aufgrund der speziellen Platinenform, auf ein neues Programm, Autodesk Fusion, ausgewichen werden. Somit hat man gelernt wie die Autodesk Cloud funktioniert und wie man Eagle und Fusion Dateien korrekt verlinkt und bearbeitet. Dies vereinfachte den Arbeitsablauf ungemein. So sollte es möglich sein alle Sensoren regelmässig und korrekt kreisförmig anzuordnen und zudem die Platinenform möglichst passend zu designen.

 

In der Software ging es mit dem der Programmierung des Raspis weiter. Die UART Kommunikation zwischen Lidar und Raspi funktioniert zuverlässig. Entsprechend stand das Umsetzen eines geeigneten Algorithmus für die genaue Positionsbestimmung an. Nach verschiedenen Versuchen konnte dies auf ein stabiles Grundlevel gebracht werden. Weitere Verbesserungen sind noch erwartet und von Nöten, jedoch funktioniert eine noch leicht wacklige Postionsfindung nun beständig.
Ebenfalls für die Position wichtig sind die Encoder Daten der Motoren. Über jene lässt sich bestimmen, wie sich der Roboter bewegt hat, beziehungsweise wie sich die Räder drehten. Um die Daten besser nutzbar zu machen wurde der Algorithmus überarbeitet. Neu wird für jedes Rad ein Vektor bestimmt, welche zusammen die Gesamtverschiebung des Roboters ergeben. Die Variante scheint zuverlässig zu funktionieren und verbessert die Genauigkeit der erhaltenen Werte.

 

Junior-Teams

Auch die beiden Junior Teams konnten im Dezember starten. Nachdem alle neuen Mitglieder in die diversen Bereiche eingeführt wurden und die Teams für die beiden Disziplinen gebildet waren, standen bei beiden Teams Planungstreffen für die Roboter und Zeitpläne an.

Beide Teams werden als Mainboard mit einem Arduino arbeiten und die alten Motorboards des WM-Teams für die Motoransteuerung benutzen.

Für das in der Kategorie Maze teilnehmende Team kommen zudem neu per I2C auswertbare Wärmesensoren hinzu. Diese dienen der Lokalisierung der zu rettenden Personen im Spielfeld.

 

November 2018: Das erste Review

WM-Team

Im November stand bereits das erste Review an. Die meisten gesetzten Milestones konnten erreicht werden und anzugehende Probleme mit ehemaligen, erfahrenen Mitgliedern besprochen werden.

Verschiedene neue Ideen und auch die Testplattformen konnten bereits vorgeführt werden. Zudem wurde das neue Dribbler Konzept vorgestellt und der momentane Entwicklungsstand vorgeführt.

Die Milestones der Elektronik und Software waren hauptsächlich Basisarbeiten an bereits bestehenden Plattformen und Programmen und konnten entsprechend weniger demonstrativ gezeigt werden. Aber auch da fanden sich viele interessante Punkte für weitere Verbesserung und wie immer war das Feedback hilfreich und die neuen Inputs liessen neue Ideen aufkommen.

 

Nebst der Vorbereitung für das Review konnte softwaremässig mit der Auslesung der Lidar Daten auf einem Raspberry Pi Zero begonnen werden. Die Kommunikation funktionierte dank den Erfahrungen mit dem Arduino relativ schnell. Die Umrechnung dieser Daten in eine Position erweist sich als schwieriger als angenommen. Ein Performance Problem bei zu vielen Ausgaben des Programmes zog das Ganze zusätzlich in die Länge. Trotz den Problemen steht nun ein Grundgerüst welches weiter getestet und mit weiteren Funktionen ausgebaut werden kann.
Nebst der Arbeit am Lidar wurde die Arbeit an der Fahrregelung abgeschlossen. Die Umrechnung der Encoder Werte in x und y Bewegung funktioniert nun zuverlässig und zufriedenstellend genau. Auch ein relativ ruhiges und zielstrebiges Fahren ist nun garantiert.

Die Elektronik begann das Testen der bestellten Lichtsensoren und stellte die 24V Stromversorgung des Linearmotors fertig. Die Tests der Lichtsensoren wurden mit Hilfe des Oszilloskops angestellt um herauszufinden wie es am einfachsten möglich sei, gleichbleibende Verhältnisse zu schaffen. Die Stromversorgung des Linearmotors war nach Erhalt der Teile schnell aufgebaut und testbereit. Allerdings ergab sich, dass durch die andauernde Umpolung der Spule des Linearmotors eine Spannungsschwankung auf der Stromversorgung entsteht. Dieses Problem konnte bis jetzt noch nicht behoben werden. Lösungsansätze sind Kondensatoren sowie Tiefpassfilter und Dioden um die Stromversorgung vor allfälligen falschen Stromflüssen zu sichern. Zudem wurden Überlegungen angestellt die gesamte Stromversorgung neu zu Planen da wir durch Regeländerungen dazu gezwungen sind einzelne elektronische Bauteile komplett abschalten zu können. Gleichzeitig muss aber die Stromversorgung für andere Bauteile gewährleistet werden.

Die Testauslegung für den Kicker mit 24V

 

Die Mechanik testete weitere Dribblerrollen-Beläge. Auf verschiedenen Rollen wurde ein spezieller Haftbelag geklebt. Dieser Belag hat sehr kleine Gumminoppen. Diese Noppen verstärken die Haftung zwischen der Rolle und dem harten Ball aus Plastik. Dabei klebte man das Klebeband auf eine harte und einer weichen Rolle. Die zuvor genutzte Dribblerrolle, die mit Latex-Milch überzogen wurde, ist im Vergleich zu den neuen Rollen besser. Als weiteres wurde diesen Monat die neuen Teile des neuen Dribblers, für einen weiteren Testroboter, ausgedruckt. Bei dieser Plattform versetzte man das Master-Ballsensorboard, das zuvor direkt unter dem Dribbler befestigt wurde, auf die unterste Platte. Dies erlaubt es den Dribbler tiefer zu setzten und dadurch das Lidar in die Mitte zu nehmen. Nun muss getestet werden, ob diese Veränderung negative Auswirkungen hat. Als weiteres wurden die Zahnräder des Dribblers optimiert. Sie sind nun passgenauer und das grösste Zahnrad hält besser auf dem Schaft des Motors.

CAD Zeichnung des neuen Zahnrads

 

 

Oktober 2018: Verschiedenste Projekte

WM Team

Im Bereich der Software wurde zu Beginn an einer automatischen Kalibration für die Liniensensoren gearbeitet. Leider konnten die Ideen nicht umgesetzt werden und es wurde deshalb entschieden, das Projekt nicht weiter zu verfolgen. Probleme machten fehlender Speicherplatz und abstürzende Microcontroller.
Zeitgleich wurden die Verwertung der Encoder Daten überprüft um sicherzustellen, dass die Werte in etwa stimmen. Zudem wurde ein kleiner alternativer Algorithmus geschrieben, um die Resultate noch zu verfeinern. Da dieser nicht funktionierte, vermutlich aufgrund der vielen sinus und cosinus Berechnungen, wird weiterhin der Alte verwendet.
Ein neu aufgenommenes Projekt war das Auslesen eines neuen Distanzsensors, eines LIDARs. Um diesen jedoch wie gewünscht zu nutzten wird ein Logic Level Converter benötigt und deshalb wurden die Tests mit einem Arduino durchgeführt. Nach einigen Schwierigkeiten funktionierte die Kommunikation einwandfrei.
Ein noch immer andauerndes Projekt ist die Überarbeitung der Fahrregelung. Dabei tauchte ein Bug auf, welcher den Roboter in seiner Richtung nicht nachvollziehbar korrigiert. An diesem Bug und der Vervollständigung der Regelung wird noch gearbeitet.

In der Mechanik wurden Verbesserungen am CAD und dem Dribbler vorgenommen. Als weiteres konnte das Lidar in das CAD eingebaut werden. Der Scanner des Lidars sollte auf einer Höhe von elf Zentimeter liegen. Dadurch können die Tore mit dem Lidar erkennt werden. Um die richtige Höhe zu erhalten, wurde ein passender Stand erstellt. Im CAD konnten nun die endgültigen Sensorabdeckungen eingefügt werden und der Motor des Dribblers wurde auf die andere Seite versetzt. dadurch gleicht er das Gewicht der Batterie aus und der Schwerpunkt verlagert sich gegen die Mitte. Für eine gleichmässige Fahrt ist es wichtig, dass der Schwerpunkt in der Mitte des Roboters liegt. Als letztes wurden Materialien für die Dribblerrolle getestet. Jedoch hat sich bis jetzt nur die alte Rolle bewährt. Sie wird aus einer Malerrolle hergestellt, die mit Latexmilch überzogen wird.

CAD Modell des Roboters

Die Elektronik hat in diesem Monat eine provisorische Stromversorgung für das neue Lidar sowie das Eagle für das neue Mainboard fertiggestellt. Für die Stromversorgung konnte ein stepup Converter genutzt werden, welcher ursprünglich für den Linearmotor des Kickers gedacht war. Für diesen Zweck hatte er sich allerdings als zu schwach herausgestellt. Für den Stromverbrauch des Lidar Motors scheint er sich aber zu eignen. Er regelt nun die fünf Volt der Powerboards auf 10 Volt hoch was für die praktischste und platzsparendste Lösung gehalten wurde. Das Eagle fertigzustellen war von elektronischer Sicht her nicht sonderlich kompliziert, da keine neuen Bauteile dazu kamen allerdings wurde es auf der Platine ziemlich eng und es mussten viele Bauteile verschoben werden. Schlussendlich konnte aber alles untergebracht werden und die Platine ist sogar noch kleiner als zuvor.

Das neue Mainboard

September 2018: Die Arbeit wurde wieder aufgenommen

WM-Team

Nach einem erfolgreichen Kick-Off Meeting am 8. September konnte die Arbeit für das nächste Jahr beginnen. Am Kick-Off Meeting wurden die verschiedenen Ziele festgesetzt und auch schon ein grober Jahresplan erstellt und Veränderungen an den neuen Robotern geplant.
Zu den Zielen für die Roboter gehören unter anderem, dass sie wieder zusammen spielen können, zuverlässiger sind als bisher und nur wenige Gegentore zulassen.
Die geplanten Veränderungen der Roboter sind vielseitig und in allen Bereichen des Roboters bemerkbar. Wie die Upgrades verlaufen wird monatlich auf diesem Blog aufgeschaltet werden.

Im Software Bereich sind schon verschiedene Projekte am laufen. So konnte in diesem Monat das neue Kompassmodel,CMPS12, für den Soccerbot getestet werden. Dieser ermöglichte sehr stabile und schnelle Werte zu erhalten und war aufgrund seiner Ähnlichkeit zu dem Vorgängermodell, CMPS11, schnell einsatzbereit. Durch die Verbesserung der Werte erhoffen wir uns eine breitere Einsetzbarkeit im Navigationsprogramm und stabileres Fahrverhalten.
Wegen Problemen im letzten Jahr mit den Ultraschall Distanzsensoren wurden Alternativen dafür gesucht. Zu überwindende Hürden waren, dass andere Ultraschallsensoren in einem zu grossen Bereich messen, weshalb unbestimmt ist zu was die gemessene Distanz korreliert und dass Laserdistanzsensoren oft Licht im Infrarot Bereich aussenden. Da der Ball ebenfalls im Infrarot Bereich Licht emittiert können diese Sensoren nicht eingesetzt werden, da sie gegnerische Teams behindern. Infrarot Distanzsensoren fallen natürlich für die gleichen Gründe ebenfalls aus dem Rennen. Nach längerer Suche fanden wir einen Laserdistanzsensor, welcher auf Wellenlängen aktiv ist, die für die verwendeten Sensoren um den Ball zu finden nicht sichtbar sind.
Um Probleme mit der Linienerkennung der letzten WM zu beheben, wurde an einem Programm zur selbständigen Kalibration der Liniensensoren gearbeitet. Ein erster Lösungsansatz wurde getestet, scheiterte jedoch daran, dass der Microcontroller nicht über genügend Speicherplatz verfügt. Deshalb wird nun an einer schlankeren Methode gearbeitet.

Die Elektronik arbeitete an einem vollständigen Satz aller Elektronikbauteile welche für einen Soccerbot gebraucht werden fertiggestellt und repariert. Diese wurden für die zu Ende des Monats vollendete Testplattform benötigt. Des Weiteren wurden DCDC Regler bestellt, welche die Spannung erhöhen. Dies wird für den Kicker für mehr Kraft benötigt. Allerdings gab es bei der Lieferung dieser Bauteile Komplikationen weshalb sie noch nicht eingebaut werden konnten. Zudem entstanden einige Schwierigkeiten beim Testen und Funktionieren der Mainboards. Ein neu gelötetes Mainboard funktionierte anfangs nicht einwandfrei. Nachdem allerdings ein Bauteil, welches defekt war, ausgetauscht wurde, konnte das Mainboard einwandfrei genutzt werden.

Die Mechanik hatte ebenfalls verschiedene Baustellen offen. Das CAD des neuen Dribblers wurde fertig gezeichnet und eine Testplattform mit neuen Omniwheels gebaut. Der diesjährige Dribbler soll höhenverstellbar sein. Dies erschwert den Bau des Dribblers erheblich. Die Drehachse befindet sich beim Motor. Die Dribblerrolle wird mit einem elastischen Band nach unten gedrückt. Durch den beweglichen Dribbler wird verhindert, dass der Roboter auf verschiedenen Spielfeldern auf den Ball dribbelt oder diesen nicht zu fassen bekommt.
Die einzelnen Teile wurden mit 3D-Drucker ausgedruckt. Bei der Mittelplatte der Testplattform fehlten jedoch Bohrungen für die Platinen im CAD. Aus diesem Grund wurde der Einbau der Elektronik sehr aufwendig. Für die weiteren CADs ist dies ein zu beachtender Punkt.
Die Subwheels der Omniwheels erstellten wir aus PLA und elastischem Filament. Nun werden wir testen, welche sich bewähren und welche endgültig verwendet werden.

CAD der unteren Hälfte des neuen Roboters mit dem neuen, dynamisch verstellbaren Dribbler

 

Neue Mitglieder, neue Juniors

Auch in diesem Jahr müssen wieder Lücken von ehemaligen Mitgliedern, welche die Schule mit Matura verliessen, geschlossen werden. Zu diesem Zweck wurde wie immer ein kleiner Infoanlass veranstaltet und wir durften vier weibliche Interessenten begrüssen.
Die neuen Mitglieder werden nun einen Roboter für die Robolympics in Rapperswil vorbereiten und dann definitiv entscheiden ob sie Robotik weiterhin als Hobby verfolgen möchten.
Um die Grundlage für die Robolympics zu schaffen wurden sie an einem Montag Nachmittag in das Programm Brics Comand eingeführt und konnten erstmals ihre eigenen Roboter bauen und in NXC programmieren.